ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

log4j: All content tagged as log4j in NoSQL databases and polyglot persistence

Cassandra + Hadoop + Solr and Sqoop and Log4j => DataStax Enterprise 2.0

The tl;dr version is: DataStax has announced

Cassandra + Hadoop + Solr on the same cluster plus Sqoop, Log4j, and workload provisioning = DataStax Enterprise 2.0

For the longer version, there are a couple of new things worth emphasizing in this release:

  1. Fully integrated enterprise search
  2. RDBMS data migration
  3. Snap-in application log ingestion
  4. improvements to OpsCenter
  5. Elastic workload provisioning

Let’s take these one by one:

Fully integrated enterprise search or Solr on top of Cassandra

Cassandra distribution model is strongly inspired by Amazon Dynamo being characterized by high availability, elasticity, and fault tolerance. Solr is the search platform built on top of Lucene. Over time people learned how to scale Solr, but current approaches are far from being simple or offering an out of the box experience. Taking the Solr protocol and indexing capabilities and putting those on top of the Cassandra architecture makes a lot of sense.

Actually this has already been done in the form of Solandra (nb Solr integration in DataStax Enter. 2.0 is not based on Solandra though). For a scalable search solution there’s already ElasticSearch, but for someone running a Cassandra cluster, this looks like a useful addition to the stack.

DataStax has already showed this direction with what was called initially Brisk (or Brangelina for friends): Hadoop on top of the Cassandra cluster that became DataStax Enterprise 1.0. Solr on top of Cassandra is 2.0, but what will be the 3.0?

There are two cherries on top of this integration of Solr: easy index rebuild operations and CQL (Cassandra Query Language) access. I’ve seen XQuery translated to Lucene searches before, but I still need to see a SQL-like language translation.

As I’ve learned from Riak at Clipboard: Why Riak and How We Made Riak Search Faster, there is some complexity involved in scaling multi-matching search queries with term-based partitioning. Cassandra uses two partitioning strategies: random and order-preserving. It would be interesting to hear what partitioning strategy is used for Solr indexes. Update: I’ve got some answers so there’ll be a follow up with more details.

RDBMS data migration: it must be Sqoop

Nothing special here. You have a DataStax Enterprise cluster with some Hadoop nodes defined and you need to process data. But some of it lives in relational databases. Sqoop at rescue.

Snap-in application log ingestion: Flume or Scribe? No, it’s Log4j

When I read this bullet point my first thought was this is Flume. Or maybe Scribe. But most probably Flume. It looks like DataStax went a different route and offers log ingestion using Log4j. It’s true that Log4j or one of its flavors most probably exist in every Java project, but it still feels like an odd choice. On the other hand there’s a Cassandra plugin for Flume.

OpsCenter Enterprise 2.0

The OpsCenter is the management, monitoring, and control tool for DataStax Enterprise. The new version includes pretty much what you’d expect from an admin/monitoring tool:

  • multi-cluster monitoring
  • visual backup
  • search monitoring

Looking back at the NoSQL administration/monitoring tools I’ve seen lately, I’m pretty sure I’ve identified a trend: they all come in various shades of black.

DataStax OpsCenter Enterprise:

DataStax OpsCenter

Riak Control:

Riak Control

Elastic workload provisioning

I’ve left at the end the feature that got me most interested into: elastic workload provisioning.

To better understand what this is, I had to go back to DataStax Enterprise 1.x where a node could be either a Cassandra node (OLTP) or a Hadoop node (processing). The new version allows quasi-dynamic node provisioning by changing the mode of a cluster (between Hadoop, Cassandra, Solr) with a stop/start operation. So given a cluster one could adjust its capacity and performance for different workloads (e.g. time-sensitive applications or temporary cluster operations).

Workload management is a feature present in most of the commercial data warehouse solutions. Even if in the very early days, DataStax Enterprise’s workload provisioning is the first take towards workload management in the NoSQL space.

Original title and link: Cassandra + Hadoop + Solr and Sqoop and Log4j => DataStax Enterprise 2.0 (NoSQL database©myNoSQL)