ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

M3R: All content tagged as M3R in NoSQL databases and polyglot persistence

Paper: M3R - Increased Performance for In-Memory Hadoop Jobs

For the weekend reads, a paper authored by a reseach team from IBM:

Main Memory Map Reduce (M3R) is a new implementation of the Hadoop Map Reduce (HMR) API targeted at online analytics on high mean-time-to-failure clusters. It does not support resilience, and supports only those workloads which can fit into cluster memory. In return, it can run HMR jobs unchanged — including jobs produced by compilers for higher-level languages such as Pig, Jaql, and SystemML and interactive front-ends like IBM BigSheets — while providing significantly better performance than the Hadoop engine on several workloads (e.g. 45x on some input sizes for sparse matrix vector multiply). M3R also supports extensions to the HMR API which can enable Map Reduce jobs to run faster on the M3R engine, while not affecting their perfor- mance under the Hadoop engine.