ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

HyperDex: All content tagged as HyperDex in NoSQL databases and polyglot persistence

NoSQL meets Bitcoin and brings down two exchanges

Most of Emin Gün Sirer’s posts end up linked here, as I usually enjoy the way he combines a real-life story with something technical, all that ending with a pitch for HyperDex.

The problem here stemmed from the broken-by-design interface and semantics offered by MongoDB. And the situation would not have been any different if we had used Cassandra or Riak. All of these first-generation NoSQL datastores were early because they are easy to build. When the datastore does not provide any tangible guarantees besides “best effort,” building it is simple. Any masters student in a top school can build an eventually consistent datastore over a weekend, and students in our courses at Cornell routinely do. What they don’t do is go from door to door in the valley, peddling the resulting code as if it could or should be deployed.

Unfortunately in this case, the jump from the real problem, which was caused only by the pure incompetence, to declaring “first-generation NoSQL databases” as being bad and pitching HyperDex’s features is both too quick and incorrect1.


  1. 1) ACID guarantees wouldn’t have solved the issue; 2) All 3 NoSQL databases mentioned, actually offer a solution for this particular scenario. 

Original title and link: NoSQL meets Bitcoin and brings down two exchanges (NoSQL database©myNoSQL)

via: http://hackingdistributed.com/2014/04/06/another-one-bites-the-dust-flexcoin/


Comparing NoSQL backup solutions

In a post introducing HyperDex backups, Robert Escriva compares the different backup solutions available in Cassandra, MongoDB, and Riak:

Cassandra: Cassandra’s backups are inconsistent, as they are taken at each server independently without coordination. Further, “Restoring from snapshots and incremental backups temporarily causes intensive CPU and I/O activity on the node being restored.”

MongoDB: MongoDB provides two backup strategies. The first strategy copies the data on backup, and re-inserts it on restore. This approach introduces high overhead because it copies the entire data set without opportunity for incremental backup.

The second approach is to use filesystem-provided snapshots to quickly backup the data of a mongod instance. This approach requires operating system support and will produce larger backup sizes.

Riak: Riak backups are inconsistent, as they are taken at each server independently without coordination, and require care when migrating between IP addresses. Further, Riak requires that each server be shut down before backing up LevelDB-powered backends.

How is HyperDex’s new backup described:

The HyperDex backup/restore process is strongly consistent, doesn’t require shutting down servers, and enables incremental backup support. Further, the process is quite efficient; it completes quickly, and does not consume CPU or I/O for extended periods of time.

The caveat is that HyperDex puts the cluster in read-only mode for backing up. That’s loss of availability. Considering both Cassandra and Riak promise is high availability, their choice was clear.

Update: This comment from Emin Gün Sirer makes me wonder if I missed something:

HyperDex quiesces the network, takes a snapshot, resumes. Whole operation takes sub-second latency.

The key point is that the system is online, available while the data copying is taking place.

Original title and link: Comparing NoSQL backup solutions (NoSQL database©myNoSQL)

via: http://hackingdistributed.com/2014/01/14/back-that-nosql-up/


HyperDex and Espresso: Two New Key-Value Stores

These last couple of weeks I’ve learned about two new key-value stores:

Espresso: a new K-V store from LinkedIn

I’ve seen this new key-value store mentioned in Sid Anand’s slides presented at QCon. There’re no details about it, but soon I’ll start to ask around about it.

HyperDex: a searchable distributed key-value store

HyperDex:

Distributed key-value stores are now a standard component of high-performance web services and cloud computing applications. While key-value stores offer significant performance and scalability advantages compared to traditional databases, they achieve these properties through a restricted API that limits object retrieval— an object can only be retrieved by the (primary and only) key under which it was inserted. This paper presents HyperDex, a novel distributed key-value store that pro- vides a unique search primitive that enables queries on secondary attributes. The key insight behind HyperDex is the concept of hyperspace hashing in which objects with multiple attributes are mapped into a multidimen- sional hyperspace. This mapping leads to efficient implementations not only for retrieval by primary key, but also for partially-specified secondary attribute searches and range queries. A novel chaining protocol enables the system to provide strong consistency guarantees while supporting replication. An evaluation of the full system shows that HyperDex is orders of magnitude faster than Cassandra and MongoDB for finding partially specified objects. Additionally, HyperDex achieves high perfor- mance for simple get/put operations compared to current state-of-the-art key-value stores, with stronger fault-tolerance and comparable scalability properties.

At first glance it sounds interesting, but being only at version 0.2b8 and going after MongoDB and Cassandra in benchmarks doesn’t look good to me. Anyways I’m just starting to read about it. You can find and download the HyperDex paper after the break.