ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

neo4j: All content about neo4j in NoSQL databases and polyglot persistence

What Is the Most Promising Graph Datastore?

Very interesting answer on Quora from professor Josep Lluis Larriba Pey.

  1. for very lager data size (TB): Infinitegraph, DEX
  2. for query speed: DEX
  3. for transaction support: Neo4j

Original title and link: What Is the Most Promising Graph Datastore? (NoSQL database©myNoSQL)

via: http://www.quora.com/Database-Systems/What-is-the-most-promising-graph-datastore


What's the Current State of Graph Databases?

Jim Webber1 in an interview with Srini Penchikala for InfoQ:

The graph databases are odd, because they’ve actually decided to have a much more expressive data model compared to relational databases. So I think they are an oddity compared to the other three types of NoSQL stores, which means that when a developer first comes across them there is an awful lot of head scratching—you can see this haircut was completely caused by Neo4J. So I think compared to the other NoSQL stores, the graph database community is a little bit further behind in terms of adoption and penetration because they are a bit of an odd beast when you look at them first, “What would I use graphs for, they are those things I forgot from university, with that boring old guy doing math on the whiteboard”, on the blackboard even, I’m so old we had chalk, would you believe?

It’s almost always impossible for me to disagree with Jim. Expanding a bit on the quote above, I’d speculate that a bit of head scratching before adopting a new database is good as it means you’ll not see many improper use cases.


  1. Jim Webber: Chief Scientist at Neo Technology 

Original title and link: What’s the Current State of Graph Databases? (NoSQL database©myNoSQL)

via: http://www.infoq.com/interviews/jim-webber-neo4j-and-graph-database-use-cases


Rolling Upgrades in Upcoming Neo4j 1.8

Chris Gioran describes rolling upgrades, a new feature in the upcoming Neo4j 1.8

So the rolling upgrade, actually, works exactly as you’d expect an upgrade would work. If there are not breaking changes between versions, you normally begin with the slaves, powering down, copying the store, migrating configuration if needed, then bringing that server back up. The new version would take over, communicate with the rest of the cluster and you wouldn’t notice anything.

A rolling upgrade offers that with versions that have incompatible protocols. Each slave, as it is brought up, detects the version running in the cluster and gracefully falls back into a compatibility mode that doesn’t allow it to become master, but allows it to continue to execute transactions.

Another thing I’ve found interesting is that the time a master machine is upgraded is considered the confirmation of a completed upgrade and all machines are switching to the new protocol. Clever.

Original title and link: Rolling Upgrades in Upcoming Neo4j 1.8 (NoSQL database©myNoSQL)

via: http://architects.dzone.com/articles/regarding-rolling-upgrades


An Overview of Neo4j.rb 2.0

Andreas Ronge writing about using Neo4j in embedded mode with JRuby:

The advantage of the embedded Neo4j is better performance due to the direct use of the Java API. This means you can write queries in plain Ruby! Another advantage of the embedded Neo4j is that since it’s an embedded database there is one less piece of infrastructure (the database server) to install. The embedded database is running in the same process as your (Rails) application. Since JRuby has real threads there is no need to start up several instances of the database or of the Ruby runtime since JRuby can utilize all available cores on the CPU. There is actually even no need to start the database at all as it will be started automatically when needed. Notice it’s still possible to use the REST protocol or the web admin interface from an embedded Neo4j, see the neo4j-admin gem.

So which should I choose ? Well, if you can’t use JRuby or you don’t need an Active Model compliant Neo4j binding then the Neo4j Server is a good choice, otherwise I would suggest using the embedded Neo4j.rb gem (but I’m a bit biased)

As showed also by the earlier [migrating data from Oracle to MongoDB with JRuby], JRuby proves to be an interesting beast for handling data. I’m more on the side of Python, but Jython is not (yet?) as up-to-date as JRuby.

Original title and link: An Overview of Neo4j.rb 2.0 (NoSQL database©myNoSQL)

via: http://blog.jayway.com/2012/05/07/neo4j-rb-2-0-an-overview/


Neo4j Data Modeling: What Question Do You Want to Answer?

Mark Needham:

Over the past few weeks I’ve been modelling ThoughtWorks project data in neo4j and I realised that the way that I’ve been doing this is by considering what question I want to answer and then building a graph to answer it.

This same principle should be applied to modeling with any NoSQL database. Thinking in terms of access patterns is one of the major differences between doing data modeling in the NoSQL space and the relational world, which is driven, at least in the first phases and theoretically, by the normalization rules.

Original title and link: Neo4j Data Modeling: What Question Do You Want to Answer? (NoSQL database©myNoSQL)

via: http://www.markhneedham.com/blog/2012/05/05/neo4j-what-question-do-you-want-to-answer/


How to Import Large Graphs to Neo4j With Spring Data

In my case, I wanted to create a simple recommendation engine (the domain doesn’t matter so much). To do that, I had to import FAST 20 million nodes of one-to-many, sparse matrix data. This became a bit more complicated (and interesting) task than originally anticipated, so it became a mini-project itself.

Bulk insert is a scenario that every database should have it covered.

Original title and link: How to Import Large Graphs to Neo4j With Spring Data (NoSQL database©myNoSQL)

via: http://iordanis.com/post/22677357894/import-large-graphs-to-neo4j-with-spring-data-fast


Neo4j REST API Tutorial

A detailed language agnostic intro to the Neo4j REST API:

In the above examples we have seen how nodes, relationships, and properties can be created, edited, updated, and deleted from the Neo4j HTTP terminal.

Original title and link: Neo4j REST API Tutorial (NoSQL database©myNoSQL)

via: http://www.hacksparrow.com/neo4j-tutorial-rest-api.html


NoSQL Databases Adoption in Numbers

Source of data is Jaspersoft NoSQL connectors downloads. RedMonk published a graphic and an analysis and Klint Finley followed up with job trends:

NoSQL databases adoption

Couple of things I don’t see mentioned in the RedMonk post:

  1. if and how data has been normalized based on each connector availability

    According to the post data has been collected between Jan.2011-Mar.2012 and I think that not all connectors have been available since the beginning of the period.

  2. if and how marketing pushes for each connectors have been weighed in

    Announcing the Hadoop connector at an event with 2000 attendees or the MongoDB connector at an event with 800 attendeed could definitely influence the results (nb: keep in mind that the largest number is less than 7000, thus 200-500 downloads triggered by such an event have a significant impact)

  3. Redis and VoltDB are mostly OLTP only databases

Original title and link: NoSQL Databases Adoption in Numbers (NoSQL database©myNoSQL)


Intro to Neo4j Cypher Query Language

Very good slidedeck from Max de Marzi introducing Neo4j’s Cypher query language. While you’ll have to go through the 50 slides yourself to get the details, I’ve extracted a couple of interesting bits:

  1. Cypher was created because Neo4j Java API was too verbose and Gremlin is too prescriptive
  2. SPARQL was designed for a different data model and doesn’t work very well with a graph database
  3. Cypher design decisions:
    • declarative
    • ASCII-art patterns (nb: when first sawing Cypher I haven’t thought of this, but it is cool)
    • pattern-matching
    • external DSL
    • closures
    • SQL familiarity (nb: as much as it’s possible with a radically different data model and processing model)


NoSQL Hosting Services

Michael Hausenblas put together a list of hosted NoSQL solutions including Amazon DynamoDB and SimpleDB, Google App Engine, Riak, Cassandra, CouchDB, MongoDB, Neo4j, and OrientDB. If you go through my posts on NoSQL hosting , you’ll find a couple more.

Original title and link: NoSQL Hosting Services (NoSQL database©myNoSQL)

via: http://webofdata.wordpress.com/2012/03/18/hosted-nosql/


Graph Databases Updates: DEX Graph Database 4.5 and Neo4j 1.7 Milestone 1

Two new releases in the graph databases space:

DEX Graph Database 4.5

The new DEX Graph Database release comes with pre-packaged graph algorithms—breadth and depth first traversal, shortest path, Gabow connectivity—available for Java, .NET, and C++. You can get the new version from here.

Neo4j 1.7 Milestone 1

As per Neo4j 1.7 milestone 1 update, this version features:

  • improved Cypher
  • SSL support
  • improved Neo4j documentation
  • high availability improvements (nb: there are recommended maintenance releases for Neo4j 1.5 and 1.6)
  • upgraded Blueprints and Gremlin support

You can get Neo4j 1.7 from here.

Original title and link: Graph Databases Updates: DEX Graph Database 4.5 and Neo4j 1.7 Milestone 1 (NoSQL database©myNoSQL)


Neo4j and the Java Universal Network/Graph Framework

Max De Marzi1:

In the world of graph databases, one such stock room is the Java Universal Network/Graph Framework(JUNG) which contains a cache of algorithms from graph theory, data mining, and social network analysis, such as routines for clustering, decomposition, optimization, random graph generation, statistical analysis, and calculation of network distances, flows, and importance measures (centrality, PageRank, HITS, etc.).

Update: there’s a second part, in which De Marzi looks into visualizing graphs with Node Quilt:

Node Quilt


  1. I’ve already told you that Max de Marzi became my favorite read on graph database subjects. There’s only one thing I don’t like, but it’s his content. 

Original title and link: Neo4j and the Java Universal Network/Graph Framework (NoSQL database©myNoSQL)

via: http://architects.dzone.com/articles/how-implement-java-universal