ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

Benchmark(et)ing

Mark Callaghan:

Benchmarketing is a common activity for many DBMS products whether they are closed or open source. Most products need new users to maintain viability and marketing is part of the process. The goal for benchmarketing is to show that A is better than B. Either by accident or on purpose good benchmarketing results focus on the message A is better than B rather than A is better than B in this context. Note that the context can be critical and includes the hardware, workload, whether both systems were properly configured and some attempt to explain why one system was faster.

He’s very right about every aspect in the post.

Maybe the only small edit I’d make would be to emphasize once more that the context is critical and if left out it’ll invalidate the value of the benchmark.

Original title and link: Benchmark(et)ing (NoSQL database©myNoSQL)

via: http://smalldatum.blogspot.com/2014/06/benchmarketing.html