ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

On Graph Processing

Ricky Ho explains these two fundamental graph papers

The execution model is based on BSP (Bulk Synchronous Processing) model. In this model, there are multiple processing units proceeding in parallel in a sequence of “supersteps”. Within each “superstep”, each processing units first receive all messages delivered to them from the preceding “superstep”, and then manipulate their local data and may queue up the message that it intends to send to other processing units. This happens asynchronously and simultaneously among all processing units. The queued up message will be delivered to the destined processing units but won’t be seen until the next “superstep”. When all the processing unit finishes the message delivery (hence the synchronization point), the next superstep can be started, and the cycle repeats until the termination condition has been reached.

Pregel execution model

Note that Google’s Pregel is at the very high level quite similar to Google’s MapReduce.

via: http://horicky.blogspot.com/2010/07/google-pregel-graph-processing.html