ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

SQL on Hadoop: An overview of frameworks and their applicability

An overview of the 3 SQL-on-Hadoop execution models — batch (10s of minutes and up), interactive (up to minutes), operational (sub-second), their applicability in the field of applications, and the main characteristics of the tools/frameworks in each of these categories:

Within the big data landscape there are multiple approaches to accessing, analyzing, and manipulating data in Hadoop. Each depends on key considerations such as latency, ANSI SQL completeness (and the ability to tolerate machine-generated SQL), developer and analyst skillsets, and architecture tradeoffs.

The usual suspects are included: Hive, Impala, Preso, Spark/Shark, Drill.

sql-on-hadoop-segments-diagram

Original title and link: SQL on Hadoop: An overview of frameworks and their applicability (NoSQL database©myNoSQL)

via: http://www.mapr.com/products/sql-on-hadoop-details