ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

NoSQL benchmarks and performance evaluations

Some say it is the right time to start having these around. Others are saying it’s way to early to start the “battle”. Users do want to see them and in case they’re lacking they create their own, most of the time using incomplete or wrong approaches.

But what am I talking about? As some of you might have guessed already:

NoSQL benchmarks and performance evaluations!

With their recent release of Riak 0.11.0, Basho guys have also published their internal ☞ benchmarking code. Similar internal benchmark code is ☞ available for MongoDB.

But users are more interested in seeing cross product benchmarks, even if most of the time constructing these is extremely complicated and they end up comparing apples with oranges.

All these being said and accepting that most of the time someone will figure out a way to invalidate the results, lets see what cross product benchmarks do we have in the NoSQL space.

Yahoo! Cloud Serving Benchmark

The Yahoo! Cloud Serving Benchmark’s goal is to facilitate performance comparisons of the new generation of cloud data serving systems. The source code is available on ☞ GitHub and Yahoo! has also published ☞ the results of running this benchmark against Cassandra, HBase, Yahoo!’s PNUTS, and a simple sharded MySQL implementation.

VoltDB Benchmark

VoltDB a new storage solution that calls itself the next-generation SQL RDBMS with ACID for fast-scaling OLTP applications has recently ☞ published the results of their benchmark comparing VoltDB and Cassandra.

It is worth noting that while being one of those apples to oranges comparisons (nb and the authors are well aware of it), there are still a couple of interesting and useful things to be learned from it (i.e. benchmarking procedure, tested scenarios, etc.)

Unfortunately at this time the source code is not yet available, but hopefully we will see it soon:

Going forward, we’re planning to release the code we used to do these benchmarks. We’d also like to try a few other storage layers

Hypertable and HBase Performance Evaluation

The guys behind Hypertable ☞ have published their results of comparing Hypertable with HBase using a benchmark based on the Google BigTable paper[1] from which both HBase and Hypertable are inheriting their architecture. Unfortunately, the benchmark code is not available at this moment.

Thanks to Stu Hood, now I know the code for this benchmark is available in the Hypertable distribution available ☞ here (tar.gz) and the configuration files are also available ☞ here (tar.gz)

So, as far as I could gather we have:

Did I miss any?


  1. The BigTable paper is available ☞ here  ()