ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

Integrating Hive and HBase at Facebook

While definitely interesting, something doesn’t seem to add up:

It (nb HBase) sidesteps Hadoop’s append-only constraint by keeping recently updated data in memory and incrementally rewriting data to new files, splitting and merging intelligently based on data distribution changes. Since it is based on Hadoop, making HBase interoperate with Hive is straightforward, meaning HBase tables can be accessed as if they were native Hive tables. As a result, a single Hive query can now perform complex operations such as join, union, and aggregation across combinations of HBase and native Hive tables. Likewise, Hive’s INSERT statement can be used to move data between HBase and native Hive tables, or to reorganize data within HBase itself.

What I seem to not understand is:

So why HBase?

via: http://www.cloudera.com/blog/2010/06/integrating-hive-and-hbase/