ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

Google Compute Engine and Data

Since announcing the GA couple of weeks ago, I’ve been noticing quite a few data related posts on the Google Compute Engine blog:

If you look at these, you’ll notice a theme: covering data from every angle; Cassandra/DSE from DataStax for OLTP, DataTorrent for stream processing, Qubole for Hadoop, MapR for their Hadoop-like solution. I can see this continuing for a while and making Google Compute Engine a strong competitor for Amazon Web Services.

One question remains though: will they be able to come up with a good integration strategy for all these 3rd party tools?

Original title and link: Google Compute Engine and Data (NoSQL database©myNoSQL)