NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter



Bloom Filters, Compressed Bloom Filters, and Golomb Compressed Sets

A GCS [Golomb Compressed Set] mirrors the structure of the compressed Bloom filter: we’re hashing the elements into a space of size n/p. But, while a compressed Bloom filter treats this as a bitmap, a GCS treats it as a list of values. Since the values are the result of hashing, we can assume that they are uniformly distributed, sort them and build a list of differences. The differences will be geometrically distributed with a parameter of p. Golomb coding is the optimal encoding for geometrically distributed values: you divide by 1/p, encode that in unary then encode the remainder in binary.

Original title and link: Bloom Filters, Compressed Bloom Filters, and Golomb Compressed Sets (NoSQL databases © myNoSQL)