ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

A Data Store Independent of Consistency Models, Upfront Data Modeling and Access Algorithms

Tina Groves1 in “Where Does Hadoop Fit in a Business Intelligence Data Strategy?“:

For example, the decision to move and transform operational data to an operational data store (ODS), to an enterprise data warehouses (EDW) or to some variation of OLAP is often made to improve performance or enhance broad consumability by business people, particularly for interactive analysis. Business rules are needed to interpret data and to enable BI capabilities such as drill up/drill down. The more business rules built into the data stores, the less modelling effort needed between the curated data and the BI deliverable.

That’s why Chirag Mehta’s ideal database featuring “an ubiquitous interface independent of consistency models, upfront data modeling, and access algorithms” is never going to be efficient. Actually, I’m not even sure it would make sense being built.


  1. Tina Groves: Product Strategist, IBM Business Intelligence 

Original title and link: A Data Store Independent of Consistency Models, Upfront Data Modeling and Access Algorithms (NoSQL database©myNoSQL)

via: http://www.ibmbigdatahub.com/blog/where-does-hadoop-fit-business-intelligence-data-strategy