ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

Next Neo4j Version Implementing HA Without ZooKeeper

The next version of Neo4j will remove the dependency on ZooKeeper for high availability setups. In a post on Neo4j blog, the team has announced the availability of the 1st milestone of Neo4j 1.9 which already contains the new implementation of Neo4j High Availability Cluster:

With Neo4j 1.9 M01, cluster members communicate directly with each other, based on an implementation of the Paxos consensus protocol for master election.

According to the updated documentation annotated with my own comments:

  • Write transactions can be performed on any database instance in a cluster. (nb: writes are performed on the master first, but the cluster does the routing automatically)
  • If the master fails a new master will be elected automatically. A new master is elected and started within just a few seconds and during this time no writes can take place (the writes will block or in rare cases throw an exception)
  • If the master goes down any running write transaction will be rolled back and new transactions will block or fail until a new master has become available.
  • The cluster automatically handles instances becoming unavailable (for example due to network issues), and also makes sure to accept them as members in the cluster when they are available again.
  • Transactions are atomic, consistent and durable but eventually propagated out to other slaves. (nb: a transaction includes only the write to the master)
  • Updates to slaves are eventual consistent by nature but can be configured to be pushed optimistically from master during commit. (nb: writes to slave will still not be part of the transaction)
  • In case there were changes on the master that didn’t get replicated before it failed, there are chances to reach a situation where two different versions exists—if the failed master recovers. This situation is resolved by having the old master dismiss its copy of the data (nb the documentation says move away)
  • Reads are highly available and the ability to handle read load scales with more database instances in the cluster.

Original title and link: Next Neo4j Version Implementing HA Without ZooKeeper (NoSQL database©myNoSQL)