ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

Doing Redundant Work to Speed Up Distributed Queries

Great post by Peter Bailis looking at how some systems are reducing tail latency by distributing reads across nodes:

Open-source Dynamo-style stores have different answers. Apache Cassandra originally sent reads to all replicas, but CASSANDRA-930 and CASSANDRA-982 changed this: one commenter argued that “in IO overloaded situations” it was better to send read requests only to the minimum number of replicas. By default, Cassandra now sends reads to the minimum number of replicas 90% of the time and to all replicas 10% of the time, primarily for consistency purposes. (Surprisingly, the relevant JIRA issues don’t even mention the latency impact.) LinkedIn’s Voldemort also uses a send-to-minimum strategy (and has evidently done so since it was open-sourced). In contrast, Basho Riak chooses the “true” Dynamo-style send-to-all read policy.

Original title and link: Doing Redundant Work to Speed Up Distributed Queries (NoSQL database©myNoSQL)

via: http://www.bailis.org/blog/doing-redundant-work-to-speed-up-distributed-queries/