ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

VoltDB: 3 Concepts that Makes it Fast

John Hugg lists the 3 concepts that make VoltDB fast:

  1. Exploit repeatable workloads: VoltDB exclusively uses a stored procedure interface.
  2. Partition data to horizontally scale: VoltDB devides data among a set of machines (or nodes) in a cluster to achieve parallelization of work and near linear scale-out.
  3. Build a SQL executor that’s specialized for the problem you’re trying to solve.: If stored procedures take microseconds, why interleave their execution with a complex system of row and table locks and thread synchronization? It’s much faster and simpler just to execute work serially.

Let’s take a quick look at these.

Using stored procedures — instead of allowing free form queries — would allow the system:

  1. to completely skip query parsing, creating and optimizing execution plans at runtime
  2. by analyzing (at deploy time) the set of stored procedures, it might also be possible to generate the appropriate indexes

The benefits of horizontally partitioned data are well understood: parallelization and also easier and cost effective hardware usage.

Single threaded execution can also help by removing the need for locking and reducing data access contention.

While these 3 solutions are making a lot of sense and can definitely make a system faster, there’s one major aspect of VoltDB that’s missing from the above list and which I think is critical to explaining its speed: VoltDB is an in-memory storage solution.

Here are a couple of examples of other NoSQL databases that benefit from being in memory (or as close as possible to it). MongoDB, while being a lot more liberal with the queries it accepts, can deliver very fast results by keeping as much data in memory as possible — remember what happened when it had to hit the disk more often? — and using appropriate indexes where needed. Redis and Memcached can deliver amazingly fast results because they keep all data in-memory. And Redis is single threaded while Memcached is not.

Original title and link: VoltDB: 3 Concepts that Makes it Fast (NoSQL databases © myNoSQL)

via: https://voltdb.com/blog/why-voltdb-so-fast