ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

When More Machines Equals Worse Results

Galileo observed how things broke if they were naively scaled up.

Google found the larger the scale the greater the impact of latency variability. When a request is implemented by work done in parallel, as is common with today’s service oriented systems, the overall response time is dominated by the long tail distribution of the parallel operations. Every response must have a consistent and low latency or the overall operation response time will be tragically slow.

Fantastic post from Todd Hoff on the (hopefully) well known truth: “the reponse time in a distributed parallel systems is the time of the slowest component“.

Original title and link: When More Machines Equals Worse Results (NoSQL database©myNoSQL)

via: http://highscalability.com/blog/2012/3/12/google-taming-the-long-latency-tail-when-more-machines-equal.html