ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

Paginating With Riak

Alexander Sicular explaining why pure key-value stores require a different approach when an application needs to paginate through result sets:

Riak at its core is a distributed key/value persisted data store that also happens to do a lot of other things. Now break that down. Looking at those words individually we have “distributed”, meaning that your data lives on a number of different machines in your cluster. Good thing, right? Yes. However it also means that no single machine is the canonical reference for all your data. Which in turn means that you need to ask multiple machines for your data and those machines will return data to you when they see fit, ie. not in order. Moving on, we have “key/value”. In regards to the topic at hand, this means that Riak has no insight into any data held within your keys, ie. Riak does not care if your stored json object has an age value in it. Next, we have “persisted”. Riak has no native internal index, meaning Riak will not store on disk the data you send it in any useful way - useful to you at least. Lastly, we have “happens to do a lot of other things.” Thankfully for us, one of those other things is Map/Reduce.

Original title and link: Paginating With Riak (NoSQL database©myNoSQL)

via: http://siculars.posterous.com/paginating-with-riak