ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

MapReduce Patterns, Algorithms, and Use Cases

Ilya Katsov’s post enumerates an extensive set of patterns and algorithms each accompanied by use cases and pseudocode:

  • counting and summing (log analysis, data querying)
  • collating (inverted indexes, ETL)
  • filtering, parsing, validation (log analysis, data querying, ETL, data validation)
  • distributed task execution (physical and engineering simulations, numerical analysis, performance testing)
  • sorting (ETL, data analysis)
  • iterative message passing/graph processing (graph analysis, web indexing)
  • distinct values (log analysis, uniqueness)
  • cross-correlation (text analysis, market analysis)
  • relational patterns: selection, projection, union, intersection, difference, aggregation, joining

As you can see there’s a wide range of problems that can be addressed using MapReduce algorithms. The complexity of applying MapReduce techniques comes from identifying the phases that lead to both effective and efficient analysis.

Original title and link: MapReduce Patterns, Algorithms, and Use Cases (NoSQL database©myNoSQL)

via: http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/