NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter



Research in the MapReduce Space

Over the weekend I’ve read two papers presenting products or research related to improving or adding new capabilities to the MapReduce data processing approach. The first of them comes from a team at Microsoft and is describing TiMR a time-oriented data processing system in MapReduce. The second, from a team at Google, presents Tenzin - a SQL implementation on the MapReduce framework. It’s great to learn that while the Hadoop community is eliminating some of the initial limitations and hardening the technical details of the platform, there are already ideas and systems out there that augment the capabilities of the MapReduce data processing model.

Original title and link: Research in the MapReduce Space (NoSQL database©myNoSQL)