ALL COVERED TOPICS

NoSQL Benchmarks NoSQL use cases NoSQL Videos NoSQL Hybrid Solutions NoSQL Presentations Big Data Hadoop MapReduce Pig Hive Flume Oozie Sqoop HDFS ZooKeeper Cascading Cascalog BigTable Cassandra HBase Hypertable Couchbase CouchDB MongoDB OrientDB RavenDB Jackrabbit Terrastore Amazon DynamoDB Redis Riak Project Voldemort Tokyo Cabinet Kyoto Cabinet memcached Amazon SimpleDB Datomic MemcacheDB M/DB GT.M Amazon Dynamo Dynomite Mnesia Yahoo! PNUTS/Sherpa Neo4j InfoGrid Sones GraphDB InfiniteGraph AllegroGraph MarkLogic Clustrix CouchDB Case Studies MongoDB Case Studies NoSQL at Adobe NoSQL at Facebook NoSQL at Twitter

NAVIGATE MAIN CATEGORIES

Close

Large-scale Incremental Processing Using Distributed Transactions and Notifications

From Daniel Peng and Frank Dabek paper (☞ PDF):

Updating an index of the web as documents are crawled requires continuously transforming a large repository of existing documents as new documents arrive. This task is one example of a class of data processing tasks that transform a large repository of data via small, independent mutations. These tasks lie in a gap between the capabilities of existing infrastructure. Databases do not meet the storage or throughput requirements of these tasks: Google’s indexing system stores tens of petabytes of data and processes billions of updates per day on thousands of machines. MapReduce and other batch-processing systems cannot process small updates individually as they rely on creating large batches for efficiency.

Is this paper at the origin of Google Caffeine?

Original title and link: Large-scale Incremental Processing Using Distributed Transactions and Notifications (NoSQL databases © myNoSQL)

via: http://research.google.com/pubs/pub36726.html